Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 588(7836): 77-82, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268863

RESUMO

Efficiently navigating a superpressure balloon in the stratosphere1 requires the integration of a multitude of cues, such as wind speed and solar elevation, and the process is complicated by forecast errors and sparse wind measurements. Coupled with the need to make decisions in real time, these factors rule out the use of conventional control techniques2,3. Here we describe the use of reinforcement learning4,5 to create a high-performing flight controller. Our algorithm uses data augmentation6,7 and a self-correcting design to overcome the key technical challenge of reinforcement learning from imperfect data, which has proved to be a major obstacle to its application to physical systems8. We deployed our controller to station Loon superpressure balloons at multiple locations across the globe, including a 39-day controlled experiment over the Pacific Ocean. Analyses show that the controller outperforms Loon's previous algorithm and is robust to the natural diversity in stratospheric winds. These results demonstrate that reinforcement learning is an effective solution to real-world autonomous control problems in which neither conventional methods nor human intervention suffice, offering clues about what may be needed to create artificially intelligent agents that continuously interact with real, dynamic environments.

3.
Nature ; 518(7540): 529-33, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25719670

RESUMO

The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.


Assuntos
Inteligência Artificial , Reforço Psicológico , Jogos de Vídeo , Algoritmos , Humanos , Modelos Psicológicos , Redes Neurais de Computação , Recompensa
4.
Drug Alcohol Depend ; 88 Suppl 2: S52-60, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17320311

RESUMO

This paper details a new methodology, instance-based reinforcement learning, for constructing adaptive treatment strategies from randomized trials. Adaptive treatment strategies are operationalized clinical guidelines which recommend the next best treatment for an individual based on his/her personal characteristics and response to earlier treatments. The instance-based reinforcement learning methodology comes from the computer science literature, where it was developed to optimize sequences of actions in an evolving, time varying system. When applied in the context of treatment design, this method provides the means to evaluate both the therapeutic and diagnostic effects of treatments in constructing an adaptive treatment strategy. The methodology is illustrated with data from the STAR*D trial, a multi-step randomized study of treatment alternatives for individuals with treatment-resistant major depressive disorder.


Assuntos
Computadores , Medicina Baseada em Evidências/métodos , Transtornos Relacionados ao Uso de Substâncias/reabilitação , Tomada de Decisões , Humanos , Aprendizagem , Reforço Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...